# **TraceCERT**®

CRM Solutions for ICP, AAS and IC



## **TraceCERT® Traceable Certified Reference Materials**

*Trace***CERT** CRMs are high accuracy standards for instrument calibration and process validation.

Following lengthy cooperation with different metrological institutes, Sigma-Aldrich® has built a laboratory for Certified Reference Material (CRM) production and certification in Buchs, Switzerland. Since 2007 the lab holds the highest achievable quality assurance level for CRM producers: double accreditation, as a testing lab following ISO/IEC 17025 and also as a CRM producer following ISO Guide 34. This combination is also called the "Gold Standard" accreditation for CRM producers.

The scope of the double accreditation at the Buchs site currently includes gravimetry, density, ICP, titrimetry and high performance quantitative NMR (HP-qNMR). This range of techniques allows us to produce CRMs for a variety of applications. While this brochure is focusing on CRM solutions for AAS, ICP and Ion Chromatography, the *Trace*CERT product line also comprises NIST traceable organic neat CRMs for chromatography and quantitative NMR. Please learn more by visiting our webpage sigma-aldrich.com/tracecert

#### For all TraceCERT standards we guarantee:

- · Highest accuracy and reliability of certified concentrations
- Traceability to internationally accepted references (i.e. NIST, BAM or SI unit kg)
- Production in accordance with ISO/IEC 17025 and ISO Guide 34
- Comprehensive certificate according to ISO Guide 31
- Competitive price

## What makes TraceCERT stand above the others?



SRMS 001 ISO Guide 34



STS 490 ISO 17025



16368-02 ISO 9001 Elemental and ion standards are available from various suppliers. Why should I buy TraceCERT certified standards? Indeed many different standards are available covering a wide range of quality, service and price. As the world's number one in supplying research chemicals and standards, Sigma-Aldrich introduced TraceCERT reference materials to underpin its leading position in terms of quality and customer convenience.

What makes TraceCERT standards higher in quality? Highest quality depends on many different technical and personal skills. These CRMs are produced and certified in accordance to metrological guidelines: highest accuracy, low uncertainties and in-depth documentation are what make TraceCERT products so reliable. These solutions are traceable to at least two independent references; NIST traceability is guaranteed whenever possible. In addition, we have extensive packaging knowledge and we guarantee all certified values until the bottle is in the customer's hands.

What is the value of Sigma-Aldrich's double accreditation to the customer? Reliability! Every analytical laboratory will demonstrate the correctness of its measurement results. The use of accurate and well-documented standards is, therefore, the first step to achieving correct measurement

results. Our double accreditation, according to ISO/IEC 17025 and ISO Guide 34, is an explicit affirmation of our competence to produce, certify and supply certified reference materials. Our **customers can count on this competence** and refer to it. We know: Buying analytical standards is a matter of trust.

What about the price? These highest quality CRMs are competitively priced when compared to the products of other CRM manufacturers. When you check our website at sigma-aldrich.com/tracecert you will see that highest quality is not necessarily the most expensive.



#### **Manufacturing of Inorganic CRMs**

The most accurate approach for the production of standards is high-precision weighing. Under ISO Guide 34 there is a particular focus on the quality of the starting materials and the entire manufacturing process including the choice of optimal packaging.

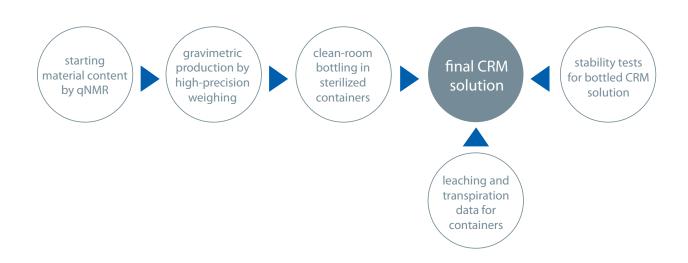


Only **materials of highest purity** are used for the production of *Trace*CERT standards. The starting materials are **characterized by two different approaches:** the direct measurement of the purity by the most accurate method (e.g. titrimetry or high-precision ICP-OES). These measurements are compared to an internationally accepted reference material (i.e. NIST, BAM). In addition the purity of

the starting materials is assigned by the "100% minus impurities" approach. Both approaches must lead to the same value within the range of their uncertainties. All starting materials are pretreated by surface etching or drying before they go to the high precision weighing room.

Gravimetric preparation using pure materials is practical and the most accurate realization of concentration units. **High-precision weighing** is a key step of the production, leading to direct traceability to the SI unit kilogram. The use of ultramicro balances with readability down to 100 ng in combination with a specially designed weighing room leads to maximum accuracy.

The weighed starting materials are dissolved in **ultrapure acids or bases** and then **precisely diluted** with ultrapure water to the final concentration. Also this operation is performed gravimetrically to achieve highest precision. **Homogenization** of the solution is achieved by overhead tumbling of the container for several hours. In the final bottling step, contamination is prevented by working under **clean room conditions** and by using PTFE-tubing and an inert peristaltic pump. After bottling, every batch is then compared to a second (whenever possible independent) reference material. Only when calculation and measurements are matching within their uncertainties (usually within 0.2 - 0.5 %) the batch is released for certification.


## **Manufacturing of Organic IC Solutions**

The task of establishing traceability for organic compounds is most efficiently solved by <sup>1</sup>H quantitative NMR (qNMR). As a relative primary method, the big advantage of qNMR is the fact that the signal intensity of the integrals is in direct proportion to the number of hydrogen atoms leading to the signal. The chemical structure of the compound has no influence on the signal intensity. This allows for comparing different compounds quantitatively with high precision. Therefore, a small set of NIST traceable standards is sufficient to certify basically any organic compound. In other words, the direct response of a qNMR experiment is of highest accuracy, leading to certified values with low uncertainties.

With a few exceptions (like sodium oxalate where the compound carries no protons), the starting materials for our IC standard solutions of organic analytes are all certified by qNMR. The certified bulk material is transferred into a 60L PVDF container by high precision weighing and dissolved with high-purity water (specific conductivity of 18 M $\Omega$ -cm, total organic carbon at low ppb level and 0.2  $\mu$ m filtered) until the calculated mass of the final solution is reached.

Equal to the inorganic standards, the solution is then homogenized by overhead tumbling of the container. After that, the final bottles are filled with solution under clean-room conditions using PTFE-tubing and a peristaltic pump.





## **Certification and Comprehensive Documentation**

For each *Trace*CERT product, a detailed and comprehensive certificate of **up to four pages** is supplied, either delivered with the product (for the ICP standards) or downloadable from the Internet using product number and lot number (for the AAS and IC standards). **Example certificates** for every product can be downloaded from the Internet (sigma-aldrich.com/tracecert).

The certificates are in accordance with **ISO Guide 31**. Below you see an example of a certificate for a platinum ICP standard highlighting the most important features.

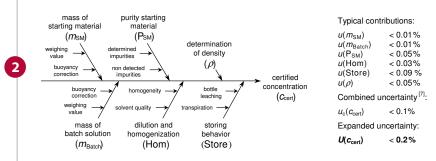
#### **Lot Specific Content Including Uncertainties:**

Certified value traceable to SI unit kg and uncertainty according to ISO Guide 35 <sup>[2]</sup> and Eurachem/CITAC Guide <sup>[3]</sup>

Constituent

Certified value at 20 °C <sup>[4]</sup>

Expanded uncertainty [ $U = k u_c$ ; k = 2]


Platinum

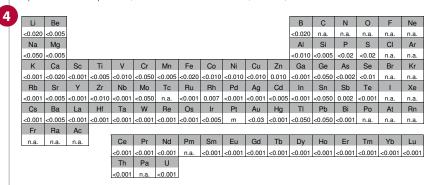
1000 mg L<sup>-1</sup>

2 mg L<sup>-1</sup>

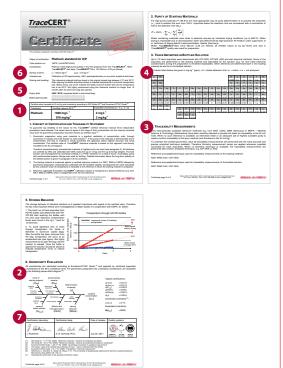
2 mg kg<sup>-1</sup>

**Certified values** are reported as mass per volume and as mass per mass. **Uncertainty budgets** are obtained by summing up all the contributing influence parameters ("bottom-up" approach) and are illustrated by a cause-effect diagram:




#### **Traceability Statement**

Reference and applied technique used for traceability measurements of the starting material: NIST SRM 3140 / ICP-OES


Reference and applied technique used for traceability measurements of the bottled solution: NIST SRM 3140 / ICP-OES

#### **Trace Impurities in Bottled Solution\***

Up to 75 trace impurities, determined with ICP-OES, ICP-MS, AAS and wet chemical methods.



\*This is only reported for the ICP standard solutions. For the IC standard solutions, trace impurities of the most relevant ions are given



**Expiration Date:** 

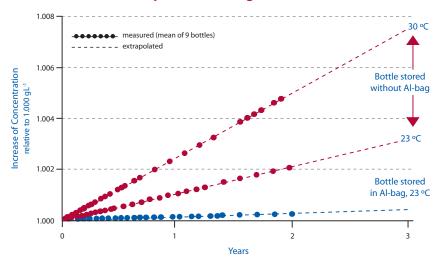
Expiry date: JUN / 2015

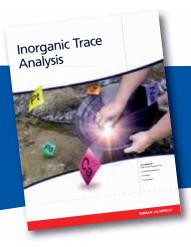
(unopened bottle in aluminized bag)

Bottle opening date: -----






## **Packaging and Stability**


The ideal container for standard solutions is totally inert, i.e., will not absorb the analyte, does not leach impurities into the solution, is impermeable to the solvent and atmosphere, is easy to handle and affordable. For TraceCERT standards we have developed the most suitable container fulfilling all of these criteria: the HDPE bottle. These bottles are extensively tested for leaching of impurities and the loss of weight by transpiration of the solvent was also investigated comprehensively as shown in the diagram below. The results of this study are also stated in the certificate of each TraceCERT product. For maximum shelf life, the bottles for ICP standards are sealed in aluminum bags to further prevent transpiration. Only this **special packaging** makes it possible to guarantee the ambitious specification of 0.2% uncertainty over the entire shelf life.

In the case of organic IC Standards, the HDPE bottles are x-ray sterilized and the bottled solution is additionally stabilized with sodium azide (about 5 mg/L) and filtered through a 0.2  $\mu m$  membrane.



#### **Transpiration Through HDPE Bottle**





Sensitive trace analysis applications require extremely pure sample preparation reagents. Sigma-Aldrich offers a comprehensive range of reagents to satisfy all purity requirements.

Visit our website to view our products or obtain a copy of our Inorganic Trace Analysis brochure (code LBJ): **sigma-aldrich.com/traceselect** 

## **TraceCERT Product Portfolio**

The TraceCERT product line of ICP, AAS and IC standard solutions actually comprises over 200 products. Since we are continuously expanding the product range, we also recommend consulting our website at sigma-aldrich.com/tracecert. In addition to our broad catalog offering, we also offer custom standards (see page 11).

## 1000 mg/L Single Element Standard Solutions for AAS and ICP

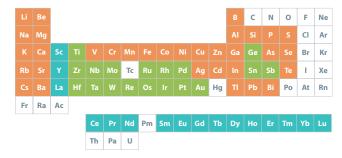
AAS standards are supplied in 250 mL HDPE bottles (with ICP standards are supplied in 100 mL HDPE bottles and some exceptions). Shelf life of these products is usually 3 sealed in an aluminum bag. We can, therefore, guarantee an years. The certificate can be downloaded from the Internet expiry of up to 4 years for the ICP standards. The printed using product number and lot number.

certificate is delivered with the product.

| Element (1000 mg/L) | Composition                                                         | Cat. No.<br>AAS Standard | Package Size | Cat. No.<br>ICP Standard | Package Size |
|---------------------|---------------------------------------------------------------------|--------------------------|--------------|--------------------------|--------------|
| Aluminum            | Al(NO <sub>3</sub> ) <sub>3</sub> x 9H <sub>2</sub> O + nitric acid | 39435                    | 250 mL       | 61935                    | 100 mL       |
| Antimony            | Sb metal + nitric acid<br>(+ hydrofluoric acid traces)              | 94117                    | 250 mL       | 73495                    | 100 mL       |
| Arsenic             | As <sub>2</sub> O <sub>3</sub> + nitric acid (+ NaOH for AAS)       | 39436                    | 250 mL       | 01969                    | 100 mL       |
| Barium              | BaCO <sub>3</sub> + nitric acid                                     | 90092                    | 250 mL       | 59943                    | 100 mL       |
| Berylium            | Be acetate + nitric acid                                            | 41856                    | 250 mL       | 51985                    | 100 mL       |
| Bismuth             | Bi metal + nitric acid                                              | 76668                    | 250 mL       | 05719                    | 100 mL       |
| Boron               | $H_3BO_3$ + water                                                   | 40591                    | 250 mL       | 01932                    | 100 mL       |
| Cadmium             | Cd metal + nitric acid                                              | 51994                    | 250 mL       | 36379                    | 100 mL       |
| Calcium             | CaCO <sub>3</sub> + nitric acid                                     | 69349                    | 250 mL       | 19051                    | 100 mL       |
| Cerium              | CeO <sub>2</sub> + nitric acid                                      | 53378                    | 250 mL       | 16734                    | 100 mL       |
| Cesium              | CsNO <sub>3</sub> + nitric acid                                     | 67717                    | 250 mL       | 96664                    | 100 mL       |
| Chromium            | Cr(NO <sub>3</sub> ) <sub>3</sub> + nitric acid                     | 02733                    | 250 mL       | 74582                    | 100 mL       |
| Cobalt              | Co metal + nitric acid                                              | 05202                    | 250 mL       | 30329                    | 100 mL       |
| Copper              | Cu metal + nitric acid                                              | 38996                    | 250 mL       | 68921                    | 100 mL       |
| Dysprosium          | Dy <sub>2</sub> O <sub>3</sub> + nitric acid                        | 78247                    | 100 mL       | 68339                    | 100 mL       |
| Erbium              | Er <sub>2</sub> O <sub>3</sub> + nitric acid                        | 38716                    | 100 mL       | 05693                    | 100 mL       |
| Europium            | Eu <sub>2</sub> O <sub>3</sub> + nitric acid                        | 03734                    | 100 mL       | 05779                    | 100 mL       |
| Gadolinium          | Gd <sub>2</sub> O <sub>3</sub> + nitric acid                        | 68837                    | 100 mL       | 16639                    | 100 mL       |
| Gallium             | Ga metal + nitric acid                                              | 52874                    | 100 mL       | 16639                    | 100 mL       |
| Germanium           | Ge semi-metal + nitric acid<br>(hydrofluoric acid traces)           | 92685                    | 250 mL       | 05419                    | 250 mL       |
| Gold                | Au metal + hydrochloric acid (nitric acid traces)                   | 08269                    | 100 mL       | 38168                    | 100 mL       |
| Hafnium             | Hf metal + nitric acid<br>(hydrofluoric acid traces)                | 55816                    | 250 mL       | 04617                    | 100 mL       |
| Holmium             | Ho <sub>2</sub> O <sub>3</sub> + nitric acid                        | 18039                    | 100 mL       | 01541                    | 100 mL       |
| Indium              | In metal + nitric acid                                              | 42225                    | 100 mL       | 00734                    | 100 mL       |
| Iron                | Fe metal + nitric acid                                              | 16596                    | 250 mL       | 43149                    | 100 mL       |
| Lanthanum           | La <sub>2</sub> O <sub>3</sub> + nitric acid                        | 43678                    | 100 mL       | 11523                    | 100 mL       |
| Lead                | Pb(NO <sub>3</sub> ) <sub>2</sub> + nitric acid                     | 16595                    | 250 mL       | 41318                    | 100 mL       |
| Lithium             | Li <sub>2</sub> CO <sub>3</sub> + nitric acid                       | 59916                    | 250 mL       | 12292                    | 100 mL       |
| Lutetium            | Lu <sub>2</sub> O <sub>3</sub> + nitric acid                        | 38476                    | 100 mL       | 03909                    | 100 mL       |
| Magnesium           | Mg metal + nitric acid                                              | 42992                    | 250 mL       | 30083                    | 100 mL       |
| Manganese           | Mn metal + nitric acid                                              | 77036                    | 250 mL       | 74128                    | 100 mL       |
| Mercury             | Hg metal + nitric acid                                              | 16482                    | 100 mL       | 28941                    | 100 mL       |
| Molybdenum          | Mo metal + hydrochloric acid + (nitric acid traces)                 | 67210                    | 250 mL       | 68780                    | 100 mL       |
| Neodymium           | Nd <sub>2</sub> O <sub>3</sub> + nitric acid                        | 41695                    | 100 mL       | 0 4730                   | 100 mL       |
| Nickel              | Ni metal + nitric acid                                              | 42242                    | 250 mL       | 28944                    | 100 mL       |
| Niobium             | Nb metal + nitric acid<br>(hydrofluoric acid traces)                | 42887                    | 100 mL       | 67913                    | 100 mL       |
| Palladium           | Pd metal + hydrochloric acid<br>(nitric acid traces)                | 78437                    | 100 mL       | 77091                    | 100 mL       |
| Phosphorus          | $H_3PO_4$ + water                                                   | 51474                    | 250 mL       | 38338                    | 100 mL       |
| Platinum            | Pt metal + hydrochloric acid (nitric acid traces)                   | 47037                    | 100 mL       | 19078                    | 100 mL       |

| Element (1000 mg/L) | Composition                                          | Cat. No.<br>AAS Standard | Package Size | Cat. No.<br>ICP Standard | Package Size |
|---------------------|------------------------------------------------------|--------------------------|--------------|--------------------------|--------------|
| Potassium           | KNO <sub>3</sub> + nitric acid                       | 96665                    | 250 mL       | 06335                    | 100 mL       |
| Rhodium             | RhCl <sub>3</sub> + hydrochloric acid                | 11561                    | 100 mL       | 04736                    | 100 mL       |
| Rubidium            | RbNO <sub>3</sub> + nitric acid                      | 55727                    | 100 mL       | 01444                    | 100 mL       |
| Scandium            | Sc <sub>2</sub> O <sub>3</sub> + nitric acid         | 68418                    | 100 mL       | 92279                    | 100 mL       |
| Selenium            | Se metal + nitric acid                               | 89498                    | 250 mL       | 50002                    | 100 mL       |
| Silicon             | Si metal + NaOH                                      | 16259                    | 250 mL       | 15747                    | 100 mL       |
| Silicon             | Si metal + nitric acid +<br>hydrofluoric acid        |                          |              | 08729                    | 100 mL       |
| Silver              | Ag metal + nitric acid                               | 39361                    | 250 mL       | 12818                    | 100 mL       |
| Sodium              | NaNO <sub>3</sub> + nitric acid                      | 05201                    | 250 mL       | 00462                    | 100 mL       |
| Strontium           | Sr(NO <sub>3</sub> ) <sub>2</sub> + nitric acid      | 51287                    | 250 mL       | 75267                    | 100 mL       |
| Sulfur              | H <sub>2</sub> SO <sub>4</sub> + water               | 18020                    | 250 mL       | 18021                    | 100 mL       |
| Tantalum            | Ta metal + nitric acid<br>(hydrofluoric acid traces) | 40413                    | 100 mL       | 16641                    | 100 mL       |
| Tellurium           | Te semi-metal + nitric acid +<br>hydrofluoric acid   | 92027                    | 250 mL       | 78358                    | 100 mL       |
| Terbium             | Tb <sub>2</sub> O <sub>3</sub> + nitric acid         | 50356                    | 100 mL       | 44881                    | 100 mL       |
| Thallium            | TINO <sub>3</sub> + nitric acid                      | 75159                    | 100 mL       | 51873                    | 100 mL       |
| Thulium             | Tm <sub>2</sub> O <sub>3</sub> + nitric acid         | 59854                    | 100 mL       | 01496                    | 100 mL       |
| Tin                 | Sn metal + hydrochloric acid                         | 74244                    | 250 mL       | 92615                    | 100 mL       |
| Titanium            | Ti metal + nitric acid                               | 04689                    | 100 mL       | 12237                    | 100 mL       |
| Tungsten            | W metal + nitric acid<br>(hydrofluoric acid traces)  | 53465                    | 100 mL       | 50334                    | 100 mL       |
| Vanadium            | V <sub>2</sub> O <sub>5</sub> + nitric acid          | 02334                    | 250 mL       | 18399                    | 100 mL       |
| Yttrium             | Y <sub>2</sub> O <sub>3</sub> + nitric acid          | 40423                    | 250 mL       | 01357                    | 100 mL       |
| Zinc                | Zn metal + nitric acid                               | 18827                    | 250 mL       | 18562                    | 100 mL       |
| Zirconium           | Zr metal + nitric acid +<br>hydrofluoric acid        | 73574                    | 250 mL       | 51244                    | 100 mL       |

## 10,000 mg/L Single Element Standard Solutions for AAS and ICP


| Element (10,000 mg/L) | Composition                                                 | Cat. No. | Package Size |
|-----------------------|-------------------------------------------------------------|----------|--------------|
| Aluminum              | $AI(NO_3)_3 \times 9H_2O + nitric acid$                     | 41377    | 100 mL       |
| Antimony              | Sb metal + nitric acid + hydrofluoric acid                  | 91482    | 100 mL       |
| Boron                 | H <sub>3</sub> BO <sub>3</sub> + ammonium hydroxid solution | 18822    | 100 mL       |
| Cadmium               | Cd metal + nitric acid                                      | 90006    | 100 mL       |
| Calcium               | CaCO <sub>3</sub> + nitric acid                             | 94458    | 100 mL       |
| Cesium                | CsNO <sub>3</sub> + nitric acid                             | 79261    | 100 mL       |
| Chromium              | Cr(NO <sub>3</sub> ) <sub>3</sub> + nitric acid             | 93104    | 100 mL       |
| Cobalt                | Co metal + nitric acid                                      | 01488    | 100 mL       |
| Copper                | Cu metal + nitric acid                                      | 94459    | 100 mL       |
| Iron                  | Fe metal + nitric acid                                      | 56209    | 100 mL       |
| Lead                  | Pb(NO <sub>3</sub> ) <sub>2</sub> + nitric acid             | 39082    | 100 mL       |
| Magnesium             | Mg metal + nitric acid                                      | 80759    | 100 mL       |
| Manganese             | $Mn(NO_3)_2 \times 4H_2O + nitric acid$                     | 42071    | 100 mL       |
| Nickel                | Ni metal + nitric acid                                      | 19013    | 100 mL       |
| Palladium             | Pd metal + hydrochloric acid (nitric acid traces)           | 50719    | 100 mL       |
| Phosphorous           | H <sub>3</sub> PO <sub>4</sub> + water                      | 19916    | 100 mL       |
| Potassium             | KNO <sub>3</sub> + nitric acid                              | 68371    | 100 mL       |
| Sodium                | NaNO <sub>3</sub> + nitric acid                             | 39924    | 100 mL       |
| Sulfur                | H <sub>2</sub> SO <sub>4</sub> + water                      | 94430    | 100 mL       |
| Tin                   | Sn metal + nitric acid + hydrofluoric acid                  | 42991    | 100 mL       |
| Titanium              | Ti metal + nitric acid + hydrofluoric acid                  | 44973    | 100 mL       |
| Tungsten              | W metal + nitric acid + hydrofluoric acid                   | 50938    | 100 mL       |
| Vanadium              | V metal + nitric acid                                       | 44712    | 100 mL       |
| Yttrium               | Y <sub>2</sub> O <sub>3</sub> + nitric acid                 | 02312    | 100 mL       |
| Zinc                  | Zn metal + nitric acid                                      | 68961    | 100 mL       |

## **Multielement Standards for ICP**

All our multielement standard solutions are delivered in 100 mL HDPE bottles (except for the USP mixes, which are delivered in FEP (Fluorinated Ethylene Propylene) bottles), sealed in an aluminium bag and the printed certificate is delivered with the product.

#### **Periodic Table Mixes**

With these three multielement standard solutions, all ICP measurable elements of the periodic table are covered (excluding mercury). All components are present at a concentration of 10 mg/L.



| Cat. No. | Description                  | Composition                | Matrix                                           | Package Size |
|----------|------------------------------|----------------------------|--------------------------------------------------|--------------|
| 92091    | Periodic Table Mix 1 for ICP | 33 elements (10 mg/L each) | 10% nitric acid                                  | 100 mL       |
| 41135    | Periodic Table Mix 2 for ICP | 18 elements (10 mg/L each) | 5% hydrochloric acid and<br>1% hydrofluoric acid | 100 mL       |
| 78334    | Periodic Table Mix 3 for ICP | 16 elements (10 mg/L each) | 5% nitric acid                                   | 100 mL       |

## **Chemical Group Mixes**

Each of these eight multielement standard solutions contains a specific group of elements. Concentrations of the analytes are 100 mg/L except for the rare elements mix where the analytes have a concentration of 50 mg/L.



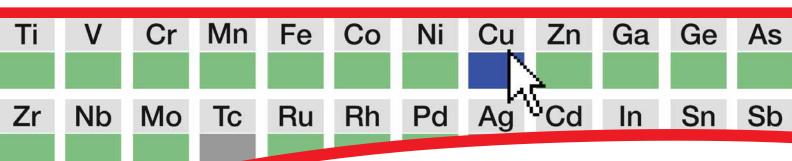
| Cat. No. | Description                         | Composition                 | Matrix                                         | Package Size |
|----------|-------------------------------------|-----------------------------|------------------------------------------------|--------------|
| 96441    | Alkali Metal Mix for ICP            | 5 elements (100 mg/L each)  | 2% nitric acid                                 | 100 mL       |
| 67288    | Alkaline Earth Metal Mix for ICP    | 5 elements (100 mg/L each)  | 2% nitric acid                                 | 100 mL       |
| 67349    | Rare Earth Metal Mix for ICP        | 16 elements (50 mg/L each)  | 2% nitric acid                                 | 100 mL       |
| 55263    | Metalloid and Non-Metal Mix for ICP | 10 elements (100 mg/L each) | 10% nitric acid and<br><0.5% hydrofluoric acid | 100 mL       |
| 51509    | Post-transition Metal Mix for ICP   | 6 elements (100 mg/L each)  | 2% nitric acid                                 | 100 mL       |
| 04330    | Transition Metal Mix 1 for ICP      | 10 elements (100 mg/L each) | 2% nitric acid and<br>1% hydrofluoric acid     | 100 mL       |
| 96442    | Transition Metal Mix 2 for ICP      | 8 elements (100 mg/L each)  | 2% nitric acid                                 | 100 mL       |
| 93468    | Transition Metal Mix 3 for ICP      | 7 elements (100 mg/L each)  | 5% nitric acid                                 | 100 mL       |

## **USP and other ICP Mixes**

We offer two standard mixes for the new pharmacopeia (USP) monographs 232 and 233 for elemental impurities determination in pharmaceutical products.

| Cat. No. | Description and Composition                                                                                                                                                                               | Package Size |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 89395    | USP 232 Element Impurities, Standard 1 (in 10% nitric acid) 1.5 mg/L: As 100 mg/L: Mo, V 25 mg/L: Cd 5 mg/L: Pb 500 mg/L: Ni 15 mg/L: Hg 1000 mg/L: Cu                                                    | 100 mL       |
| 39967    | USP 232 Element Impurities, Standard 2 (in 10% HCl) 100 mg/L: Ir, Os, Pd, Pt, Rh, Ru                                                                                                                      | 100 mL       |
| Cat. No. | Description and Composition                                                                                                                                                                               | Package Size |
| 90243    | Multielement standard solution I for ICP (in 10 % HNO <sub>3</sub> ) Ag, Ba, Ca, Cd, Co, Cu, Fe, Mg, Mn, Sr, Zn: 10 mg/L each Al, B, Cr, Li, Mo, Na, Ni, Tl: 50 mg/L each Bi, K, Pb: 100 mg/L each        | 100 mL       |
| 49596    | Multielement standard solution III for ICP (in 5 % HNO <sub>3</sub> ) K: 200 mg/L Mg: 400 mg/L Na: 1000 mg/L Ca: 2000 mg/L                                                                                | 100 mL       |
| 51844    | Multielement standard solution IV for ICP (in 10 % HNO <sub>3</sub> )  Cr, Cu, Ni: 20 mg/L each Al, As, Ba, Pb, V: 40 mg/L each B, Fe, Se, Tl, Zn: 100 mg/L each Be, Cd, Co, Mn: 10mg/L each              | 100 mL       |
| 54704    | Multielement standard solution V for ICP (in 10 % HNO <sub>3</sub> ) Ag, Al, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, In, Li, Mg, Mn, Mo, Ni, Pb, Rb, Sr, Tl, V, Zn: 10 mg/L each Ca, Fe, Ca, Na:100 mg/L each | 100 mL       |

## 1000 mg/L Single Ion Standards for IC


All IC standards are supplied in HDPE bottles. As a unique feature for these IC standards we list the most common trace impurities that are relevant for the IC separation.

| Inorganic Anions (1000 mg/L)           | Composition                                     | Cat. No.              | Package Size  |
|----------------------------------------|-------------------------------------------------|-----------------------|---------------|
| Bromide                                | NaBr + water                                    | 43147                 | 100 mL        |
| Chloride                               | NaCI + water                                    | 39883                 | 100 mL        |
| Chromate                               | K <sub>2</sub> CrO <sub>4</sub> + water         | 40121                 | 100 mL        |
| Cyanide                                | $K_2Zn(CN)_4 + water$                           | 90157                 | 100 mL        |
| Fluoride                               | NaF + water                                     | 77365                 | 100 mL        |
| lodide                                 | KI + water                                      | 41271                 | 100 mL        |
| Nitrate                                | NaNO <sub>3</sub> + water                       | 74246                 | 100 mL        |
| Nitrate Nitrogen                       | NaNO <sub>3</sub> + water                       | 53638                 | 100 mL        |
| Nitrite                                | NaNO <sub>2</sub> + water (NaOH stabilized)     | 67276                 | 100 mL        |
| Nitrite Nitrogen                       | NaNO <sub>2</sub> + water (NaOH stabilized)     | 36427                 | 100 mL        |
| Phosphate                              | Na <sub>2</sub> HPO <sub>4</sub> + water        | 38364                 | 100 mL        |
| Sulfate                                | Na <sub>2</sub> SO <sub>4</sub> + water         | 90071                 | 100 mL        |
| Organic Anions (1000 mg/L)             | Composition                                     | Cat. No.              | Package Size  |
| Acetate                                | Acetic acid, NaOH, water                        | 51791                 | 100 mL        |
| Adipate                                | Adipic acid + water                             | 40968                 | 100 mL        |
| Benzoate                               | Benzoic acid, water                             | 40497                 | 100 mL        |
| Butyrate                               | Sodium butyrate, water                          | 08089                 | 100 mL        |
| Citrate                                | Citric acid, water                              | 96068                 | 100 mL        |
| Formate                                | Calcium formate, water                          | 44293                 | 100 mL        |
| Glutarate                              | Glutaric acid + water                           | 07438                 | 100 mL        |
| Glycolate                              | Glyolic acid + water                            | 07391                 | 100 mL        |
| Lactate                                | Magnesium L-lactate + water                     | 07096                 | 100 mL        |
| Malate                                 | L-(-)-Malic acid + water                        | 06994                 | 100 mL        |
| Maleate                                | Maleic acid, water                              | 06908                 | 100 mL        |
| Malonate                               | Malonic acid, water                             | 42412                 | 100 mL        |
| Oxalate                                | Sodium oxalate, water                           | 73139                 | 100 mL        |
| Phthalate                              | Potassium phthalate monobasic, water            | 90677                 | 100 mL        |
| Propionate                             | Sodium propionate, water                        | 51716                 | 100 mL        |
| Succinate                              | Succinic acid + water                           | 43057                 | 100 mL        |
| Tartrate                               | L-(*)-Tartaric acid, water                      | 43484                 | 100 mL        |
| In commits Cable to (1000 to all)      | Commonition                                     | Cat No                | Do drove Sino |
| Inorganic Cations (1000 mg/L) Ammonium | Composition  NH <sub>4</sub> CI + water         | <b>Cat. No.</b> 59755 | Package Size  |
| Ammonium (Nitrogen)                    | NH₄Cl, water                                    | 89503                 | 100 mL        |
| Barium                                 | BaCO <sub>3</sub> + nitric acid                 | 87142                 | 100 mL        |
| Cadmium                                | Cd metal + nitric acid                          | 69679                 | 100 mL        |
| Calcium                                | CaCO <sub>3</sub> + nitric acid                 | 39865                 | 100 mL        |
|                                        | Co metal + nitric acid                          | 49594                 | 100 mL        |
| Cobalt                                 |                                                 |                       |               |
| Copper                                 | Cu metal + nitric acid                          | 40786                 | 100 mL        |
| Lead                                   | Pb(NO <sub>3</sub> ) <sub>2</sub> + nitric acid | 51777                 | 100 mL        |
| Lithium                                | Li <sub>2</sub> CO <sub>3</sub> + nitric acid   | 59878                 | 100 mL        |
| Magnesium                              | Mg metal + nitric acid                          | 89441                 | 100 mL        |
| Manganese                              | Mn metal + nitric acid                          | 51439                 | 100 mL        |
| Nickel                                 | Ni metal + nitric acid                          | 42637                 | 100 mL        |
| Potassium                              | KNO <sub>3</sub> + water                        | 53337                 | 100 mL        |
| Sodium                                 | NaNO <sub>3</sub> + water                       | 43492                 | 100 mL        |
| Strontium                              | Sr(NO <sub>3</sub> ) <sub>2</sub> + nitric acid | 42151                 | 100 mL        |
| Zinc                                   | Zn metal + nitric acid                          | 67902                 | 100 mL        |

#### **Multiion Standards for IC**

All Standards are packaged in a HDPE bottle. The starting materials for the two PRIMUS primary multiion standards were certified by EMPA (Eidgenössische Materialprüfungs- und Forschungsanstalt) and BAM (Bundesamt für Materialforschung und -prüfung, Germany).

| Multiion Standards | Description and Composition                                                                                                                                                                                                                          | Package Size |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 89886              | Primary Multi Anion Standard Solution (PRIMUS), certified for ion chromatography, Reference material traceable to SI, 10.0 mg/kg $\pm$ 0.2% F $^{\circ}$ , CI $^{\circ}$ , NO $_3^{\circ}$ , PO $_4^{\circ}$ , SO $_4^{\circ}$ $^{\circ}$ each anion | 50 mL        |
| 89316              | Primary Multi Cation Standard Solution (PRIMUS), certified for ion chromatography, Reference material traceable to SI, 10.0 mg/kg $\pm$ 0.2% Li*, Na*, K*, Mg²*, Ca²* each cation                                                                    | 50 mL        |
| 91286              | Multi Cation Standard 1 for IC, Ca: 1000 mg/L; K: 200 mg/L; Li: 50 mg/L; Mg: 200 mg/L; Na: 200 mg/L                                                                                                                                                  | 100 mL       |



## Hf

## **Inorganic Custom Standards**

## **An Interactive Online Platform**

In addition to our comprehensive portfolio of catalog products, we also offer you a custom service where you can define your own multi-component standards using our Inorganic Custom Standards Online Platform:

## sigma-aldrich.com/csp



For all *Trace***CERT** Custom Standards, we guarantee:

- Certification under double accreditation following ISO/IEC 17025 and ISO Guide 34
- Traceability to at least two independent references (i.e. NIST, BAM or SI unit kg)
- Printed certificate according to ISO Guide 31
- Light- and gas-tight aluminum foil bag packaging allowing a shelf life of up to four years

**With a few simple mouse clicks** you can specify the desired characteristics among the following:

- Element standard
- Ion standard
- Defining matrix
- Analytes
- Concentrations

The Custom Standards Platform is a **dynamic web page**: elements, ions and matrices can only be chosen if the combinations are chemically allowed.

After your request has been **submitted online**, we will evaluate the production costs and respond with a quotation by e-mail.

## It's easy! Try it out!

## Sigma-Aldrich® Worldwide Offices

**Argentina** 

Free Tel: 0810 888 7446 Tel: (+54) 11 4556 1472 Fax: (+54) 11 4552 1698

Australia

Free Tel: 1800 800 097 Free Fax: 1800 800 096 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

Brazil

Free Tel: 0800 701 7425 Tel: (+55) 11 3732 3100 Fax: (+55) 11 5522 9895

Canada

Free Tel: 1800 565 1400 Free Fax: 1800 265 3858 Tel: (+1) 905 829 9500 Fax: (+1) 905 829 9292

Chile

Tel: (+56) 2 495 7395 Fax: (+56) 2 495 7396

People's Republic of China

Free Tel: 800 819 3336 Tel: (+86) 21 6141 5566 Fax: (+86) 21 6141 5567

Czech Republic

Tel: (+420) 246 003 200 Fax: (+420) 246 003 291

Denmark

Tel: (+45) 43 56 59 00 Fax: (+45) 43 56 59 05

France

Free Tel: 0800 211 408 Free Fax: 0800 031 052 Tel: (+33) 474 82 28 88 Fax: (+33) 474 95 68 08

Germany

Free Tel: 0800 51 55 000 Free Fax: 0800 64 90 000 Tel: (+49) 89 6513 0 Fax: (+49) 89 6513 1169 India

Telephone
Bangalore: (+91) 80 6621 9400
New Delhi: (+91) 11 4358 8000
Mumbai: (+91) 22 4087 2364
Pune: (+91) 20 4146 4700
Hyderabad: (+91) 40 3067 7450
Kolkata: (+91) 33 4013 8000

Fax

Bangalore: (+91) 80 6621 9550 New Delhi: (+91) 11 4358 8001 Mumbai: (+91) 22 2579 7589 Pune: (+91) 20 4146 4777 Hyderabad: (+91) 40 3067 7451 Kolkata: (+91) 33 4013 8016

Ireland

Free Tel: 1800 200 888 Free Fax: 1800 600 222 Tel: +353 (0) 402 20370 Fax: + 353 (0) 402 20375

Israel

Free Tel: 1 800 70 2222 Tel: (+972) 8 948 4222 Fax: (+972) 8 948 4200

Italy

Free Tel: 800 827 018 Tel: (+39) 02 3341 7310 Fax: (+39) 02 3801 0737

Japan

Tel: (+81) 3 5796 7300 Fax: (+81) 3 5796 7315

Korea

Free Tel: (+82) 80 023 7111 Free Fax: (+82) 80 023 8111 Tel: (+82) 31 329 9000 Fax: (+82) 31 329 9090

Luxembourg

Tel: (+32) 3 899 1301 Fax: (+32) 3 899 1311

Malaysia

Tel: (+60) 3 5635 3321 Fax: (+60) 3 5635 4116 Mexico

Free Tel: 01 800 007 5300 Free Fax: 01 800 712 9920 Tel: (+52) 722 276 1600 Fax: (+52) 722 276 1601

The Netherlands

Tel: (+31) 78 620 5411 Fax: (+31) 78 620 5421

**New Zealand** 

Free Tel: 0800 936 666 Free Fax: 0800 937 777 Tel: (+61) 2 9841 0555 Fax: (+61) 2 9841 0500

**Poland** 

Tel: (+48) 61 829 01 00 Fax: (+48) 61 829 01 20

**Portugal** 

Free Tel: 800 202 180 Free Fax: 800 202 178 Tel: (+351) 21 924 2555 Fax: (+351) 21 924 2610

Russia

Tel: (+7) 495 621 5828 Fax: (+7) 495 621 6037

Singapore

Tel: (+65) 6779 1200 Fax: (+65) 6779 1822

Slovakia

Tel: (+421) 255 571 562 Fax: (+421) 255 571 564

South Africa

Free Tel: 0800 1100 75 Free Fax: 0800 1100 79 Tel: (+27) 11 979 1188 Fax: (+27) 11 979 1119

Spain

Free Tel: 900 101 376 Free Fax: 900 102 028 Tel: (+34) 91 661 99 77 Fax: (+34) 91 661 96 42

Sweden

Tel: (+46) 8 742 4200 Fax: (+46) 8 742 4243 Switzerland

Free Tel: 0800 80 00 80 Free Fax: 0800 80 00 81 Tel: (+41) 81 755 2511 Fax: (+41) 81 756 5449

**Thailand** 

Tel: (+66) 2 126 8141 Fax: (+66) 2 126 8080

**United Kingdom** 

Free Tel: 0800 717 181 Free Fax: 0800 378 785 Tel: (+44) 1747 833 000 Fax: (+44) 1747 833 313

**United States** 

Toll-Free: 800 325 3010 Toll-Free Fax: 800 325 5052 Tel: (+1) 314 771 5765 Fax: (+1) 314 771 5757

**Vietnam** 

Tel: (+84) 8 3516 2810 Fax: (+84) 8 6258 4238

Internet

sigma-aldrich.com



Enabling Science to Improve the Quality of Life Order/Customer Service (800) 325-3010 • Fax (800) 325-5052
Technical Service (800) 325-5832 • sigma-aldrich.com/techservice
Development/Custom Manufacturing Inquiries SAFC\* (800) 244-1173
Safety-related Information sigma-aldrich.com/safetycenter

World Headquarters 3050 Spruce St. St. Louis, MO 63103 (314) 771-5765 sigma-aldrich.com